Spectrophotométrie : énoncé : Anabac Sciences physiques Pondichéry 2011

Anabac

Sciences Physiques

Pondichéry 2012

Exercice 2

Énoncé et correction

 

 

 

Exercice 2 : Spectrophotométrie (5,5 pts)

1ière partie : lumière et spectrophotométrie.

2ième partie : Dosage colorimétrique par étalonnage.

Courbe d'étalonnage

 

 Exercice 2 : Spectrophotométrie (5,5 pts)

La lumière est un « outil » précieux en chimie analytique.

En effet, toute espèce chimique est susceptible d’interagir avec des radiations lumineuses.

Par exemple, une espèce colorée X absorbe certaines radiations visibles.

Le principe de la spectrophotométrie repose sur la mesure de l’absorbance A de l’espèce X en solution dans un solvant Y.

Cette grandeur A est le résultat de la comparaison de deux intensités lumineuses :

celle d’une radiation monochromatique ayant traversé une cuve transparente contenant le solvant Y,

et celle de la même radiation émergeant de la même cuve contenant la solution de l’espèce X dans le solvant Y.

 

 

Haut

1. 1ière partie : lumière et spectrophotométrie.

1.1. Donner les valeurs limites des longueurs d’onde du spectre visible dans le vide et les couleurs correspondantes.

1.2. Situer, du point de vue de leur longueur d’onde, les rayonnements ultraviolets et infrarouges par rapport au spectre visible.

1.3. Le rôle du monochromateur dans un spectrophotomètre est de sélectionner une radiation monochromatique particulière.

Donner la définition d’une lumière monochromatique.

1.4. Certains monochromateurs comportent un prisme de verre.

1.4.1. Définir l’indice de réfraction n d’un milieu transparent.

1.4.2. De quel paramètre caractéristique d’une radiation lumineuse dépend l’indice n pour un milieu transparent donné ?

1.4.3. Le prisme de verre décompose la lumière blanche.

Nommer le phénomène responsable de cette décomposition et le décrire brièvement en quelques lignes.

1.4.4. Lors d’une réfraction air-verre, la déviation d’une radiation lumineuse est d’autant plus importante que la longueur d’onde de la radiation est faible.

Sans faire de calcul, compléter la figure de la feuille annexe (à rendre avec la copie) en y faisant figurer le trajet d’un rayon lumineux bleu

et d’un rayon rouge à l’intérieur du prisme et après sa sortie.

Haut

2. 2ième partie : Dosage colorimétrique par étalonnage.

On se propose de déterminer la concentration en diiode dans une teinture d’iode officinale.

On commence par diluer 200 fois la teinture d’iode (trop concentrée pour une étude spectrophotométrique directe).

La solution aqueuse obtenue à l’issue de cette dilution est appelée solution S.

 

Par ailleurs, on dispose d’un ensemble de solutions aqueuses de diiode notées Di (D1, D2, etc.) de concentrations connues toutes différentes.

Ces solutions ont des colorations proches de celle de la solution S.

Données :

Spectre d’absorption d’une solution aqueuse de diiode

de concentration molaire C = 3,0 x 10 – 3 mol.L–1

 

Masse molaire atomique de l’iode : 127 g.mol-1

 

Écart relatif entre une valeur expérimentale Gexp et une valeur attendue Ga d’une grandeur quelconque G :

2.1. On peut trouver expérimentalement un encadrement de la concentration en diiode de la solution S, sans utiliser un spectrophotomètre.

2.1.1.  Expliquer brièvement la méthode.

2.1.2.  Pourquoi lors de la mise en œuvre de cette méthode, faut-il que les récipients utilisés (tubes à essais ou béchers) soient tous identiques ?

2.2. À l’aide d’un spectrophotomètre, on mesure l’absorbance Ai de chaque solution Di de diiode, puis celle de la solution S.

2.2.1. Donner la valeur d’une longueur d’onde qui vous paraît bien appropriée pour ces mesures. Justifier brièvement.

2.2.2.  On obtient les résultats suivants :

Concentration C

de la solution

en μmol / L

50

100

250

500

750

1000

Absorbance A

de la solution

0,041

0,10

0,22

0,46

0,70

0,87

 

Absorbance de la solution S : A = 0,78.

 

La courbe d’étalonnage de l’absorbance en fonction de la concentration molaire C en diiode est fournie en annexe.

 

La relation entre l’absorbance A et la concentration C est appelée loi de Beer-Lambert.

Elle s’écrit : A = k . C avec k une constante et C la concentration molaire de l’espèce colorée dans la solution.

La courbe d’étalonnage obtenue est-elle en accord avec cette loi ? Justifier

2.2.3. Déterminer graphiquement la concentration molaire CS.exp en diiode de la solution S.

En déduire la concentration molaire Cexp en diiode de la teinture d’iode officinale.

2.3. La teinture d’iode officinale est étiquetée à 5,0 % en masse de diiode. Sa masse volumique est ρ = 9,0 x 102 g . L– 1.

2.3.1.  À partir de ces données, vérifier que la concentration massique Cm en diiode attendue dans cette teinture est 45 g . L– 1.

2.3.2.  En déduire la valeur de la concentration molaire attendue en diiode dans cette teinture. On la notera Ca.

2.3.3.  Calculer l’écart relatif entre la valeur expérimentale Cexp à la valeur Ca. Conclure.

Haut

 

Questions 2.2.2 et 2.2.3 : Courbe d’étalonnage :

 

 

 

 

Haut