Phys. N° 09 C : exercice de Physique : mouvement d'une particule dans un champ magnétique

Phys. N° 09 :
Mouvement d'une
particule chargée
dans un champ magnétique uniforme.
Exercice

Cours

   

 
logo

 bobines d'Helmholtz

Application :

Étude de la trajectoire d'une particule chargée dans un champ magnétique uniforme.

Dans une ampoule sphérique en verre contenant un gaz sous faible pression,

on étudie la trajectoire suivie par un pinceau d'électrons homocinétique soumis

à l'action d'un champ magnétique uniforme, de vecteur champ B.
L'ampoule est placée entre deux bobines d'Helmholtz (bobines coaxiales)

où règne le champ magnétique B, dirigé selon l'axe des bobines

(c'est-à-dire perpendiculairement au plan de la figure 1).
Le pinceau d'électrons est crée par un canon C dans lequel les électrons,

émis à une vitesse négligeable sont accélérés par une tension U.

Les électrons sortent du canon avec une vitesse représentée par le vecteur

 v0 vertical orienté vers le haut.
On observe une trajectoire circulaire de rayon
R.

On néglige le poids des électrons devant la valeur de la force de Lorentz.

Dans le cas présent, v0 et B sont orthogonaux.

Étude dynamique :

Donner l'expression de la force électromagnétique F qui s'exerce sur un

électron à l'instant t.

En déduire les caractéristiques du vecteur force. Faire un schéma.

Force de Lorentz : Force de Lorentz

en considérant un électron : vecteur F

 

 

Caractéristiques de vecteur F :

 vecteur F

 

 

 

- Direction perpendiculaire à vecteur v et vecteur B 

- Sens, q . vecteur v vecteur B et vecteur F forment un trièdre direct

- Valeur : F = e . v . B 

(Au niveau de la terminale, alpha : 90 °)

schéma

 

Après avoir préciser le référentiel d'étude et choisi le repère d'Espace, appliquer le théorème du centre d'inertie.

Dans l'exercice, on néglige l'effet du poids devant la force magnétique.

Le théorème du centre d'inertie dans le référentiel galiléen permet d'écrire que : vecteur F (1) avec vecteur F (2)

Donner l'expression du vecteur accélération d'un électron.

De (1) et (2), on tire que : vecteur aG(3)

On peut remarquer que B est un vecteur constant mais que le vecteur vitesse change de direction à chaque instant

puisque le mouvement est circulaire.

Étude cinématique :

Montrer alors que le mouvement des électrons se fait dans un plan.

Conditions initiales :

  vecteur OG0   

vecteur v0
et

De l'expression (3), on déduit qu'à chaque instant, le vecteur accélération est perpendiculaire

au vecteur champ magnétique (propriété du produit vectoriel.

En conséquence, le vecteur accélération est contenu dans le plan xOy.

On en déduit les coordonnées du vecteur accélération dans le repère choisi.

vecteur aG vecteur vG vecteur OG

Du fait des conditions initiales, le mouvement s'effectue dans le plan xOy.

Il n'y a pas de composante suivant l'axe z'z.

Monter que le mouvement des électrons est circulaire uniforme.

Conseil : il faut utiliser le repère de Frenet et donner l'expression du

vecteur F dans ce repère.

Comme il faut montrer que le mouvement est circulaire, on utilise le repère de Frenet.

On donne l'expression de F dans ce repère :

vecteur F en conséquence : vecteur F.

On peut en déduire l'expression du vecteur accélération dans le repère de Frenet : vecteur aG.

On en déduit les coordonnées du vecteur accélération dans le repère de Frenet :


at 

La composante tangentielle

de l'accélération est nulle

a

an 

En conséquence : cte v0 

le mouvement de la particule est uniforme

az = 0

D'autre part : rayon R

Le mouvement est circulaire.

Établir l'expression de R (rayon du cercle) en fonction de m, v0, B et e

(e représente la charge élémentaire et m la masse de l'électron).

R = m .v0 / (e . B)

 

R = 3,0 cm

Indiquer sur la figure 1, la direction et le sens de la force F à la sortie du canon à électron, ainsi que le sens de B.

Indiquer le sens du courant dans les bobines.

Voir figure 1

schéma

On utilise ce dispositif pour déterminer expérimentalement le rapport e / m appelé charge massique de l'électron.

Comment peut-on mesurer pratiquement la valeur de B ? On trouve B = 1,25 × 10 –3 T.

Mesure à l'aide d'un Teslamètre.

Comment peut-on mesurer pratiquement le diamètre D de la trajectoire circulaire suivie par les électrons ?

On trouve D = 6 cm.

Mesure à l'aide d'une règle graduée.

Montrer que v0, vitesse initiale des électrons à la sortie du canon, s'exprime en fonction

de la charge massique de l'électron

et de la tension accélératrice U.

En déduire que la charge massique e / m peut s'exprimer en fonction de U, B et R.

Calculer numériquement e / m sachant que U = 124 V.

Données :

m = 9,10 × 10 –31 kg ; B = 1,25 × 10 –3 T ;

e = 1,60 × 10 –19 C ; v0 = 6,59 × 10 6 m / s

En utilisant le théorème de l'énergie cinétique :

Attention : électron : charge négative

  expression de R(4)

variation Ec(5)

En utilisant (4) et (5), on trouve :

  A.N :

e / m = 1,8 E11 C / kg

 Vérification :

e / m = 1,76 E11 C / kg

 
 

haut