TP Chimie. N° 06 |
Concentration et conductimétrie. Correction |
|
2)- Etalonnage du conductimètre. 2)- Préparation du sérum pour la mesure. |
Matériel : |
- Un G.B.F, deux multimètres (un noir et un jaune), une cellule de conductimétrie, - Des fils de connexion, - Des fioles jaugées de 100 mL, des pipettes graduées ou des pipettes jaugées (à voir), - Un flacon de sérum physiologique, de l’eau distillée, - Une solution de chlorure de sodium de concentration : - C0 = 1,0 mmol / L. C1 = 2 mmol / L, C2 = 3 mmol / L, C3 = 4 mmol / L, - C4 = 5 mmol / L, C5 = 6 mmol / L, C6 = 7 mmol / L, C7 = 8 mmol / L, - C8 = 9 mmol / L, C9 = 10 mmol / L, C10 = 12 mmol / L, C11 = 14 mmol / L |
Objectifs :
- Tracer
une courbe d’étalonnage. - Le sérum physiologique est une solution aqueuse de chlorure de sodium.
-
Le but de cette
manipulation est de déterminer la concentration molaire de ce sérum en
utilisant la conductimétrie. |
- Schéma et montage :
Attention à la position des sélecteurs avant d'effectuer les mesures. |
- Schématiser et effectuer le montage du conductimètre.
2)- Étalonnage du conductimètre.
Plonger la cellule dans un bécher contenant de l’eau distillée.
- Réglage du G.B.F : régler la fréquence sur 500 Hz et la valeur de la tension sur U = 1,0 V
(Cette valeur doit être maintenue constante au cours de l’expérience).
- Mesurer la valeur de l’intensité Ib.
- Ceci constitue le « blanc ».
- On quantifie ici la présence d’éventuelles impuretés dans l’eau.
- La valeur mesurée devra être systématiquement soustraite des autres valeurs mesurées pour éliminer la contribution de ces impuretés.
Plonger successivement la cellule dans les douze solutions d’étalonnage.
- Pour chaque mesure, vérifier la valeur de la tension (U = 1,0 V) avant de relever la valeur de l’intensité I.
- Penser à rincer la cellule après chaque mesure puis à éliminer la majeure partie de l’eau de rinçage (papier joseph) sans perturber la cellule.
- Au début de la mesure suivante, agiter doucement la cellule pour bien homogénéiser.
Animation CabriJava pour effectuer les mesures
Reproduire et compléter le tableau suivant :
C (mmol / L) |
0,0 |
1,0 |
2,0 |
3,0 |
4,0 |
5,0 |
6,0 |
7,0 |
8,0 |
9,0 |
10,0 |
12,0 |
14,0 |
I (mA) |
|
|
|
|
|
|
|
|
|
|
|
|
|
G (mS) |
|
|
|
|
|
|
|
|
|
|
|
|
|
-
On effectue le blanc avec la solution
d’eau distillée :
U
|
1,008 V |
I
b =
|
0,04
mA |
- Tableau de valeurs : Valeur de la
tension : U
= 1,008 V
C (mmol / L) |
0,0 |
1,0 |
2,0 |
3,0 |
4,0 |
5,0 |
6,0 |
7,0 |
8,0 |
9,0 |
10,0 |
12,0 |
14,0 |
|
I (mA) |
0,01 |
0,87 |
1,16 |
1,61 |
2,13 |
2,64 |
3,31 |
3,65 |
4,18 |
4,63 |
5,16 |
6,04 |
7,08 |
|
|
0,01 |
0,86 |
1,15 |
1,60 |
2,11 |
2,62 |
3,28 |
3,62 |
4,15 |
4,59 |
5,12 |
5,99 |
7,02 |
|
G corrigé (mS) |
0,00 |
0,82 |
1,11 |
1,56 |
2,07 |
2,58 |
3,24 |
3,58 |
4,11 |
4,55 |
5,08 |
5,95 |
6,98 |
2)- Préparation du sérum pour la mesure.
a)- concentration massique de la solution de sérum physiologique :
- Relever l’indication que porte le flacon de sérum physiologique acheté en pharmacie.
- Titre massique de la solution de sérum
physiologique : t
=
En déduire la valeur de la concentration molaire CS.
- Concentration molaire
C
S :
- M
≈
M
(Na)
+ M (Cl)
=>
M
≈ 23,0
+ 35,5
=>
M
≈
-
b)- Dilution.
Cette solution étant trop concentrée, il faut la diluer 20 fois (9,0 g / L) ou 100 fois.
- Proposer un mode opératoire permettant de préparer 100 mL de solution diluée.
- La préparer et effectuer la mesure.
-
Dilution : Comme on utilise la
solution commerciale à
S
|
{ |
C
S = 0,15 mol / L |
Dilution |
S
F
|
{ |
C
F = C
S / 20 |
V
S = ? |
→ |
V
F = 100 mL |
||||
n
S =
C
S .
V
S |
|
n
F =
C
F .
V
F |
||||
Solution
mère |
|
Solution
fille |
- Volume de solution commerciale nécessaire :
- Au cours de la dilution, il y a
conservation de la quantité de matière de soluté :
-
nS
=
nF
=>
CS
. VS
=
CF . VF
- VS
=
VF / 20
-
VS
=
10
mL
-
Mode opératoire :
Verser suffisamment de solution Mère dans un bécher |
Deuxième étape : On prélève le volume nécessaire de solution Mère à l’aide d’une pipette jaugée munie de sa propipette |
Troisième étape : On verse le volume nécessaire de solution dans la fiole jaugée de volume approprié.. |
On ne pipette jamais directement dans le flacon qui contient
la solution
Mère |
|
|
Quatrième étape : On ajoute de l’eau distillée et on agite mélanger et homogénéiser |
Cinquième étape : On complète avec une pissette d’eau distillée jusqu’au trait de jauge. |
Sixième étape : on agite pour homogénéiser. La solution est prête. |
|
|
|
-
Concentration de la solution fille :
CF = CS / 20
≈ 7,5
x
10
–
3
mol / L
III-
Exploitation
des résultats.
Tracer la courbe d’étalonnage représentative de la variation de la conductance G en fonction de la concentration C : G = f (C).
- Donner les caractéristiques de la courbe obtenue. Quelle allure aurait cette courbe si on ne tenait pas compte du « blanc » ?
- Les points sont sensiblement alignés. On peut tracer la droite moyenne.
- Avec Excel, on ajoute une courbe de tendance
et comme modèle ‘’linéaire’’
- La courbe obtenue est une droite qui passe pratiquement par l’origine.
- On peut affirmer que la conductance de la
solution est proportionnelle à la concentration de la solution, ceci dans le
domaine étudié.
- On tire :
G
(mS)
≈
- Si on ne tient pas compte du « blanc » :
- Dans le cas présent, l’écart entre les deux courbes est minime car l’eau ''distillée'' utilisée est peu conductrice.
- Quelle relation simple existe-t-il entre la concentration et la conductance lorsque l’électrolyte est suffisamment dilué ?
- Donner cette relation.
- On tire :
G
(mS)
≈
-
(Le coefficient de détermination est proche de 1
: R2
≈
- Que se passe-t-il lorsque l’électrolyte est trop concentré ?
- Lorsque l’électrolyte est trop
concentré, il n’y a plus proportionnalité entre la conductance et la
concentration de la solution.
- À l’aide de la courbe, déduire la concentration molaire en chlorure de sodium de la solution diluée de sérum physiologique.
- Concentration molaire correspondante à
la solution commerciale :
- Exploitation graphique :
Mesure |
Sérum physiologique Solution diluée |
I = 3,8 mA |
U = 1,008 V |
||
I b = 0,040 mA |
Conductance |
G = 3,76 mS |
- En déduire la concentration molaire correspondante à la solution commerciale. La comparer à la valeur CS. Conclusion.
- Concentration
de la solution commerciale diluée :
C
≈ 7,3 mmol / L
- Concentration de la solution
commerciale : CS
=
- CS
≈ 0,14 mol / L
- Calcule d’erreur :
-
- Le résultat est médiocre !!!
Détermination
de la concentration d’une solution L’hypocalcémie, carence de l’organisme en élément calcium, peut être traitée par injection intraveineuse d’une solution de chlorure de calcium (Ca2+ (aq) + 2 Cl- (aq)).
Pour déterminer sa concentration C, on utilise une méthode conductimétrique. 1. On dispose, pour étalonner la cellule conductimétrique,
de solutions étalons
Si
de concentrations connues
Ci. - Le tableau suivant fournit les conductances
Gi
de
ces différentes solutions.
- Tracer la courbe
G
= f
(C). 2. Le contenu d’une ampoule de solution injectable a été dilué 100 fois. La mesure de la conductance de la solution diluée, avec la même cellule conductimétrique et à la même température, donne : G’
= 2,71 mS. a. Déterminer la valeur de la concentration
C’
de la solution diluée. b. En déduire la concentration
C
de la solution injectable. c.
Pourquoi a-t-il été nécessaire de diluer cette
solution ? 3. Déterminer l’apport calcique, c’est-à-dire la
quantité d’élément calcium, d’une ampoule de solution
injectable de 10,0 mL. |
Correction :
Détermination de la concentration d’une solution 1. Courbe G = f (C). - Les points sont sensiblement alignés. - On peut tracer la droite moyenne. - Avec Excel, on ajoute une courbe de tendance et comme modèle ‘’linéaire’’ - La courbe obtenue est une droite qui passe pratiquement par l’origine. - On peut affirmer que la conductance de la solution est proportionnelle à la concentration de la solution, ceci dans le domaine étudié. - On tire :
G
(mS)
≈ 2. Conductance de la solution diluée a. Concentration C’ de la solution diluée. - Exploitation graphique : C’ ≈ 4,6 mmol / L ≈ 4,6 x 10– 3 mol / L b. Concentration C de la solution injectable. - C = 100 C’ => C = 100 x 4,6 x 10– 3 => C ≈ 4,6 x 10– 1 mol / L c. Pourquoi a-t-il été nécessaire de diluer cette solution ? - La concentration de la solution injectable est supérieure à la concentration de la solution S0. - Elle n’appartient pas au domaine d’étude. - La loi n’est plus vérifiée pour les solutions trop concentrées. 3. Apport calcique d’une ampoule de solution injectable de 10,0 mL. - Par définition : n (Ca 2+) = [Ca 2+] . V - n (Ca 2+) = 4,6 x 10– 1 x 10,0 x 10– 3 - n (Ca 2+) ≈ 4,6 x 10– 3 mol |